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ABSTRACT

We are currently in an era of precision cosmology. The precision with which anisotropies

in the Cosmic Microwave Background, CMB for short, are being measured has increased

tremendously over the years, thanks to the efforts of the Planck and the WMAP missions.

The theory of inflation predicts the presence of such anisotropies. In this work, I study

the generation and evolution of tensor perturbations, otherwise referred to as gravitational

waves, during inflation. The aim of this project is to construct a python code to numerically

evaluate the tensor power spectrum for two different models of inflation, namely power law

inflation and inflation driven by a small field model of potential.



Contents

1 Introduction 1

1.1 Conventions and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Driving inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Metric perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Quantization of perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Inflationary models 7

2.1 Power law inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 The Bunch-Davies initial conditions . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Tensor power spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Inflation driven by small field potential . . . . . . . . . . . . . . . . . . . . . . 11

3 Numerical results 12

3.1 Power-law inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Inflation driven by a small field potential . . . . . . . . . . . . . . . . . . . . . 15

4 Summary 19

Appendix A Python Code 22

v



List of Figures

3.1 Plot of φ(N) as a function of N during power law inflation . . . . . . . . . . . 13

3.2 Plot of H(N) as a function of N during power law inflation . . . . . . . . . . . 14

3.3 Plot of ε1(N) as a function of N during power law inflation . . . . . . . . . . . 14

3.4 Plot of PT(k) as a function of k during power law inflation . . . . . . . . . . . 16

3.5 Plot of φ(N) as a function of N during inflation driven by a small field poten-

tial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.6 Plot ofH(N) as a function ofN during inflation driven by a small field potential 17

3.7 Plot of ε1(N) as a function of N during inflation driven by a small field poten-

tial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.8 Plot of PT(k) as a function of k during inflation driven by a small field poten-

tial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

vi



Chapter 1

Introduction

Inflation refers to a period of rapid expansion during the early stages of the radiation dom-

inated epoch of our universe. Inflation solves two of the biggest drawbacks of the Hot big

bang model namely the horizon problem and the flatness problem. (For a detailed review

of the horizon problem see Ref. [1].)

This work presents a study of the generation and evolution of tensor perturbations

and the power spectrum of tensor perturbations generated during two models of inflation,

namely power law inflation and inflation driven by a small field potential model. In this

chapter, I shall describe the need for scalar fields and the conditions imposed upon them to

drive inflation. I shall briefly discuss linear perturbation theory and discuss tensor pertur-

bations in the metric. In the next chapter, I shall outline how given a form of the scale factor

a(t) we can arrive at the dependence of the scalar field φ and the potential V (φ) with respect

to cosmic time t. After solving the background equations, I shall discuss the solution to the

equation governing tensor perturbations and the power spectrum of the tensor perturba-

tions. Finally, I shall discuss the numerical solutions we obtained for the power spectrum of

tensor perturbations for the two aforementioned models of inflation.

1.1 Conventions and notations

Before we go any further, I shall list the conventions and notations adopted in this

work. I shall work in (3+1)− dimensions and I shall adopt the metric signature (+,−,−,−).

Greek indices denote all spacetime coordinates where as Latin indices, other than k, refer
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1.2. DRIVING INFLATION

to spatial coordinates. I define the Planck mass as MPl = (8πG)−1/2 and for convenience,

we shall work in units of MPl = 1. Cosmic time is denoted as t and an overdot denotes

differentiation with respect to cosmic time where as the conformal time is denoted as η

and an overprime denotes differentiation with respect to conformal time. The duration of

inflation can also be measured in terms of number of e-folds N where N is defined as

N = ln

(
a(t)

a0

)
, (1.1)

where a0 is the scale factor when inflation started and a(t) is the scale factor when inflation

ends.

1.2 Driving inflation

In order to achieve inflation and solve the horizon problem, it is necessary that

ä > 0. (1.2)

In a spatially flat, smooth, Friedmann universe, the line element is described by

ds2 = dt2 − a2(t)dx2 = a2(η)
(
dη2 − dx2

)
, (1.3)

and for such a line element, the Einstein’s equations can be rewritten as the following two

Friedmann equations

(
ȧ

a

)2

= H2 =

(
8πG

3

)
ρ, (1.4)

(
ä

a

)
= Ḣ +H2 = −

(
4πG

3

)
(ρ+ 3p), (1.5)

where ρ and p denote the energy density and pressure of the field driving the expansion and

H = ȧ/a is the Hubble parameter

From Eqs. (1.2) and (1.5), it is straight forward to see that

(ρ+ 3p) < 0, (1.6)
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1.3. METRIC PERTURBATIONS

is a necessary condition for the field that drives inflation. We can check that neither matter,

for which p = 0, nor radiation, for which p = ρ/3, satisfies the necessary condition. We can

therefore, under the necessary conditions, invoke a generic scalar field φ and a correspond-

ing potential V (φ) to drive inflation. A scalar field that drives inflation is also referred to as

an Inflaton.

We can write the action for such a scalar field as

S[φ] =

∫
d4x
√
−g
[(

1

2

)(
∂λφ∂λφ

)
− V (φ)

]
, (1.7)

and the stress-energy tensor for the corresponding scalar field is given by

T µν = ∂µφ∂νφ− δµν
[(

1

2

)(
∂λφ∂λφ

)
− V (φ)

]
, (1.8)

From Eqn. (1.7), we can derive the equations of motion for the scalar field as

φ̈+ 3Hφ̇+ Vφ = 0, (1.9)

where Vφ = dV/dφ.

1.3 Metric perturbations

Anisotropies in the CMB are one part in 105 and it can be inferred that they should be

much smaller at earlier epochs given the expanding nature of our universe. We can therefore

study the generation and evolution of such perturbations using linear perturbation theory.

According to their behaviour under local rotation of the spatial coordinates on hyper-

surfaces of constant time, the perturbations in a Friedmann background can be classified

as scalars, vectors and tensors. Scalar perturbations remain invariant under rotations. In

fact, scalar perturbations are what are most responsible for the anisotropy we see in our uni-

verse. Under local rotations, vector and tensor perturbations behave as vectors and tensors

respectively. Rotational velocity fields generate the vector perturbations and are, therefore,

also referred to as vorticity modes. Finally, gravitational waves are described by tensor

perturbations. (For a discussion of cosmological linear perturbations theory, refer to Refs.

3



1.3. METRIC PERTURBATIONS

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10].) For the scope of this work, I shall restrict myself to tensor pertur-

bations of the metric.

The Friedmann line element describes a homogeneous and isotropic universe, which

is not a valid assumption under the presence of perturbations. We can therefore choose to

work in a variety of coordinate systems under the condition that they reduce to the standard

Friedmann line element in the limit when the perturbations vanish. A gauge refers to a

particular choice of coordinates and a gauge transformation refers to the transformation

from one gauge to another. Therefore, we can choose to study the evolution of perturbations

in terms of gauge-invariant quantities or work in a specific gauge throughout. We shall

adopt the latter approach. As such, the tensor perturbations in the metric can be represented

as

ds2 = dt2 − a2(t)(δij + hij)dx
idxj, (1.10)

where the tensor perturbations are characterized by a transverse, traceless matrix hij .

In a similar fashion, we shall classify the sources of said metric perturbations, namely

the stress-energy tensor. The stress energy tensor, similar to the metric tensor, is a symmetric

two tensor. Therefore, perturbations in the stress-energy tensor can also be classified as

scalar, vector and tensor components. A scalar field driving inflation, the inflaton, is a scalar

source. Velocity fields with vorticity are vector sources. Having eliminated the scalar and

vector contributions, anisotropic stresses constitute a tensor source. This is referred to as the

decomposition theorem.

The perturbed Einstein tensors can be derived from the perturbed metric δgµν . The

Einstein’s equations can then relate the perturbed Einstein tensors to the perturbed stress-

energy tensor, say, δTµν . These equations govern the evolution of metric perturbations. The

decomposition theorem stated above dictates that the scalar, vector and tensor perturbations

decouple and can therefore be studied independent of one another. In other words, scalar

sources lead to scalar perturbations, vector sources lead to vector perturbations and tensor

sources lead to tensor perturbations.
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1.4. QUANTIZATION OF PERTURBATIONS

Under these assumptions, the perturbed Einstein tensors corresponding to the metric

described by Eqn. (1.10) are given by

δG0
0 = δG0

i = 0, (1.11)

δGi
j = −

(
1

2

)(
ḧij + 3Hḣij −

1

a2
∇2hij

)
, (1.12)

after imposing the conditions that hij is a transverse and traceless matrix.

Similarly, we can write the perturbed stress-energy tensor as

δT 0
0 = δρ, (1.13)

δT 0
i = (∇iδσ) , (1.14)

δT ij = −δp δij. (1.15)

In the absence of anisotropic stresses i.e if δT ij = 0, we get that

ḧ+ 3Hḣ−
(

1

a2

)
∇2h = 0. (1.16)

Eqn. (1.16) can be rewritten in terms of conformal time η as

h
′′

+ 2Hh′ −∇2h = 0, (1.17)

whereH = a
′
/a.

1.4 Quantization of perturbations

In Fourier space, Eqn. (1.17) becomes

h
′′

k + 2Hh′

k + k2hk = 0. (1.18)
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1.4. QUANTIZATION OF PERTURBATIONS

The homogeneity of the Friedmann background allows us to quantize the tensor per-

turbations. Upon quantization, we can write the tensor perturbations ĥ in terms of it’s

Fourier modes hk(η) as

ĥ(η,x) =

∫
d3k

(2π)3/2
[
âkhk(η)eik·x + âk

†h∗k(η)e−ik·x
]
, (1.19)

where the creation and annihilation operators, âk and âk†, follow the standard commutation

relations. At the linear order in perturbations that we are working in, the power spectrum

of the tensor perturbations can be characterized by the two point function of the quantum

field ĥ. The power spectrum of the tensor perturbations PT(k) and the two point function

are related by

∫ ∞
0

dk PT(k) =

∫
d3k

∫
d3(x− x′)

(2π)3
〈0|ĥ(η,x)ĥ(η,x′)|0〉 e−i[k·(x−x′)], (1.20)

where |0〉 is the vacuum state defined as âk|0〉 = 0 ∀ k. Using Eqs. (1.19) and (1.20), we can

obtain the tensor power spectrum as

PT(k) = 2

(
k3

2π2

)
|hk|2, (1.21)

where the factor of 2 is needed to take into account the two states of polarization, + and ×,

of the gravitational waves.
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Chapter 2

Inflationary models

As mentioned earlier, neither a matter field nor a radiation field can drive inflation.

Therefore, under the necessary conditions, we can assume that a scalar field φ and a po-

tential V (φ) drive inflation. Numerous models for the potential function V (φ) have been

proposed, each capable of driving inflation. Power law inflation, inflation driven by a small

field potential model, slow-roll inflation and chaotic inflation are a few such examples. We

shall discuss the first two in more detail later in this chapter. The predictions of these models

are quantified in terms of the spectral indices of the power spectrum of the scalar and tensor

perturbations at super-Hubble scales, namely nS & nT and the ratio of tensor to scalar power

spectrum at super-Hubble scales r.

In this chapter, we shall look at two models of inflation namely power law inflation

and inflation driven by a small field potential model. For the latter of the two models, it is

highly non-trivial to solve the background equations analytically. We shall therefore only be

able to obtain the analytical solutions for power law inflation. Numerical solutions for the

background and the tensor power spectrum for the latter model are discussed in the next

chapter. We shall first solve the equations governing the background. Using the solutions of

the background equations, we shall solve the equations governing the tensor perturbations

and obtain the power spectrum of the tensor perturbations.

From Eq. (1.8), we can write the individual components of the stress-energy tensor for

a scalar field φ as

7



2.1. POWER LAW INFLATION

T 0
0 =

(
φ̇2

2

)
+ V (φ) = ρ, (2.1)

T ij = −

[(
φ̇2

2

)
− V (φ)

]
δij = −pδij. (2.2)

Using Eqs. (2.1) and (2.2), we can rewrite Eqs. (1.4) and (1.5) as

Ḣ =
−φ̇2

2M2
Pl

, (2.3)

H2 =

(
1

3M2
Pl

)(
φ̇2

2
+ V

)
. (2.4)

We can now express the scalar field φ and the potential V in terms of cosmic time t as

φ(t) =
√

2MPl

∫
dt
√
−Ḣ, (2.5)

V (t) = M2
Pl

(
3H2 + Ḣ

)
. (2.6)

2.1 Power law inflation

Assume that the scale factor has a power-law form during inflation, namely

a(t) = a0t
q. (2.7)

Eq. (2.7) can be written in terms of conformal time η as

a(η) =
(
−H̄η

)(γ+1)
, (2.8)

where H̄ and γ are given by

H̄ = a
1/q
0 (q − 1) and γ = −

(
2q − 1

q − 1

)
. (2.9)

8



2.1. POWER LAW INFLATION

We can see that the scalar field and the potential that drive the inflation have the form

φ(t)

MPl

=
√

(2q) ln

[√(
V0

(3q − 1)q

)(
t

MPl

)]
, (2.10)

V (φ) = V0 exp

[
−

√(
2

q

)(
φ

MPl

)]
. (2.11)

In terms of e-fold N, we can rewrite φ(t) as

φ(N)

MPl

=

√(
2

q

)
N −

√
(2q) ln t0. (2.12)

where t0 =
√

((3q − 1)q/V0)

Similarly, we can write the Hubble parameter H in terms of e-fold N as

H(N) = H0 exp−N/q . (2.13)

We also introduce a new parameter ε1(N), which is defined as

ε1(N) =
1

2

(
dφ

dN

)2

=
1

q
, (2.14)

Having solved for the scalar field and the Hubble parameter, we can now attempt

to solve the equation governing the tensor perturbations. We can rewrite Eq. (1.16), by

substituting hk = (uk/a), as

u′′k +

[
k2 −

(
a′′

a

)]
uk = 0, (2.15)

and the power spectrum governing tensor perturbations, namely Eq. (1.21), becomes

PT(k) = 2

(
k3

2π2

)
|hk|2 = 2

(
k3

2π2

)(
|uk|
a

)2

. (2.16)
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2.1. POWER LAW INFLATION

2.1.1 The Bunch-Davies initial conditions

In order to arrive at the analytical solutions to the tensor perturbations in fourier space,

we need to understand the initial conditions from which these perturbations evolved. We

impose the initial conditions when the modes are well inside the Hubble radius i.e when

η → −∞ or (k/aH) >> 1. In such a sub-Hubble limit, the curvature of spacetime can be

neglected. Further, upon imposing the condition that uk are positive frequency modes, we

can arrive at the solution to the Eq. (2.15) in the sub-Hubble limit as

lim
(k/aH)→∞ uk(η)→

(
1√
2k

)
e−ikη. (2.17)

2.1.2 Tensor power spectrum

Now that we’ve obtained the solutions for the background and the initial conditions

governing the tensor perturbations, we shall attempt to solve the equation governing the

tensor perturbations and obtain the power spectrum of the tensor perturbations.

Substituting the scale factor given by Eq. (2.7) in the Eq. (2.15), we can arrive at a

solution that satisfies the initial conditions Eq. (2.17) as

uk(η) =

(
−πη

4

)1/2

ei[ν+(1/2)](π/2)H(1)
ν (−kη), (2.18)

where ν = [γ + (1/2)] and H
(1)
ν is the Hankel function of the first kind and of order ν (Ref.

[11]).

In the super-Hubble limit ( i.e as (−kη → 0)), we can approximate the Hankel function

to

H(1)
ν (z) ∼ −(i/π)Γ(ν)

(z
2

)(−ν)
. (2.19)

where Γ(ν) is a Gamma function.

10



2.2. INFLATION DRIVEN BY SMALL FIELD POTENTIAL

In the super-Hubble limit, uk and the scale factor a have similar behaviour. Therefore,

the tensor amplitude hk reaches a constant value and the tensor power spectrum can be

written as

PT(k) = AT H̄2

(
k

H̄

)2(γ+2)

, (2.20)

where

AT =

[
1

π3M2
Pl

](
|Γ(ν)|2

2(2γ+1)

)
. (2.21)

In this case, the spectral index of the tensor power spectrum in the super-Hubble limit

is

nT = 2(γ + 2) =
−2

q − 1
. (2.22)

2.2 Inflation driven by small field potential

We shall assume that the potential V (φ) that drives inflation is of the form

V = V0

[
1−

(
φ

µ

)p]
, (2.23)

where p = 4, µ/MPl = 15 and V0/M
4
Pl = 5.55702× 10−10.

Substituting Eq. (2.23) in Eq. (1.9) and using the expression for H from the Eq. (2.4),

we get

φ̈+

( √
3

MPl

)(
φ̇2

2
+ V

)
φ̇− pV0

µ

(
φ

µ

)(p−1)

= 0. (2.24)

We shall not attempt to obtain an analytical solution for the above expression, instead

we solved for φ(N) numerically. Further details regarding the numerical procedure are pro-

vided in the next chapter.
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Chapter 3

Numerical results

In this section, I describe the procedure adopted to numerically evaluate the tensor

power spectrum of gravitational waves in a power-law inflationary scenario and in a sce-

nario where inflation is driven by a small-field potential model. Note that we are working

in units of MPl = 1.

3.1 Power-law inflation

Assuming an inflationary potential V (φ) of the form

V (φ) = V0 exp

[
−
√

2

q
(φ− φi)

]
, (3.1)

where φ represents the scalar field driving inflation, φi is the initial value at N = 0 and q is

the power-law index.

Eqn (1.9) can be written in terms of e-fold time N as

d2φ

dN2
+

[
3− 1

2

(
dφ

dN

)2
]

dφ

dN
+

[
6−

(
dφ

dN

)2
]

1

2V (φ)

dV (φ)

dN
= 0. (3.2)

Note that I have made used of the following definition for H to arrive at the above expression

H2 =
2V (φ)

3− (dφ/dN)2
. (3.3)

12



3.1. POWER-LAW INFLATION

Figure 3.1: Plot of φ(N) as a function of N during power law inflation

We numerically integrate the Eq.(3.2) using a fourth-order Runge-Kutta method, im-

plemented in Python (Refs. [12, 13, 14]). Integration was performed from e-fold time N = 0

to N = 70 while assuming the initial conditions for φ and dφ/dN at N = 0 to be

φ

MPl

= 1, (3.4)

and

dφ

dN
=

(√
2q

t0

1

H0

)
MPl, (3.5)

where H0 is the value of the Hubble parameter at N = 0.

Figures 3.1, 3.2 and 3.3 show the theoretical and numerical estimate of φ, H and ε1 as a

function ofN . As can be seen, the theoretical and numerical estimates are in good agreement

with one another.

13



3.1. POWER-LAW INFLATION

Figure 3.2: Plot of H(N) as a function of N during power law inflation

Figure 3.3: Plot of ε1(N) as a function of N during power law inflation

14



3.2. INFLATION DRIVEN BY A SMALL FIELD POTENTIAL

Using the numerical solutions to the background, namely φ(N) andH(N), we can now

solve the equation governing the tensor perturbations. Rewriting the Eq. (1.18) in terms of

e-fold time, we arrive at

d2hk
dN2

+

(
3 +

1

H

dH

dN

)
dhk
dN

+
k2

a2H2
hk = 0. (3.6)

The above equation was numerically integrated using a fourth order Runge-Kutta

method, implemented in Python. It is to be noted that hk was numerically evaluated for

various values of k, ranging from 10−6 to 100 Mpc−1. For each value of k, the initial and final

limits of integration in terms of e-fold N were calculated by solving for N when the modes

are well inside the Hubble scale (k/aH = 100) and when the modes are well outside the

Hubble scale (k/aH = 10−5). Using Eq. (2.17), the initial values for hk and dhk/dN were set

to be

hk =
1√

2k0a(N)
, (3.7)

dhk
dN

= − 1√
2k0a(N)

−
i
√

(k0/2)

a2(N)H(N)
, (3.8)

Now that we have successfully obtained a numerical solution for hk, we can evaluate

the tensor power spectrum using Eq. (1.21). Figure 3.4 shows the numerical estimate of

PT(k) as a function of k.

3.2 Inflation driven by a small field potential

For a small field potential model, given by Eq. (2.23), we repeated the above process

to estimate the scalar field φ, the Hubble parameter H , ε1 and the tensor power spectrum

PT(k).

To solve the background equation governing the evolution of φ numerically, we as-

sumed that at N = 0, φ/MPl = 7.3 and that φ̇/M2
Pl = 8× 10−7.

15



3.2. INFLATION DRIVEN BY A SMALL FIELD POTENTIAL

Figure 3.4: Plot of PT(k) as a function of k during power law inflation

Figure 3.5: Plot of φ(N) as a function of N during inflation driven by a small field potential

16



3.2. INFLATION DRIVEN BY A SMALL FIELD POTENTIAL

Figure 3.6: Plot of H(N) as a function of N during inflation driven by a small field potential

Figure 3.7: Plot of ε1(N) as a function of N during inflation driven by a small field potential

17



3.2. INFLATION DRIVEN BY A SMALL FIELD POTENTIAL

Figure 3.8: Plot of PT(k) as a function of k during inflation driven by a small field potential

Figures 3.5, 3.6 and 3.7 show the numerical estimates of φ, H and ε1 as a function of N .

Figure 3.8 shows the numerical estimate of the tensor power spectrum PT(k) as a function

of k during inflation driven by small field model of potential.
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Chapter 4

Summary

In this thesis, we have studied tensor perturbations in the metric and evaluated the

power spectrum of the tensor perturbations. We have also numerically estimated the power

spectrum of tensor perturbations in the super-Hubble limit.

In the first chapter, we discussed how neither a matter field nor a radiation field can

drive inflation and we understood the conditions imposed on a scalar field to drive infla-

tion. We had written down the stress-energy tensor corresponding to the scalar field and we

arrived at the equation governing the evolution of the scalar field. Using the perturbed Ein-

stein tensors and the perturbed stress-energy tensor, we were able to arrive at an equation

governing the evolution of tensor perturbations. We then quantized the tensor perturba-

tions in terms of it’s Fourier modes and arrived at an analytic form of the power spectrum

of tensor perturbations.

In the second chapter, we discussed the analytical solutions of the scalar field φ and

the potential V (φ) during power law inflation. After solving the background, we obtained

an analytic solution to the tensor perturbations and obtained the power spectrum of tensor

perturbations in the super-Hubble limit. We briefly discuss inflation driven by a small field

potential model.

In the third chapter, we discussed the methods used to arrive at the numerical solutions

to the scalar field, the Hubble parameter and ε1 as a function of e-fold N and the tensor

power spectrum PT(k) as a function of k. We studied two forms of the potential, namely

19



power law and small field models of the potential. Using a python code, we were able to

obtain numerical solutions that were in good agreement with the theoretical estimates for

power law inflation. We also arrived at the numerical solutions for the small field potential

model.
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Appendix A

Python Code

We have attached a python code that evaluates the theoretical and numerical estimates

for the scalar field φ, the Hubble parameter H , ε1 as a function of e-fold N and the power

spectrum of the tensor perturbations in the super-Hubble limit PT(k) as a function of k

during power law inflation. To arrive at the numerical estimates during inflation driven by

a small field potential model, we shall replace the potential function with Eq. (2.23) and

change the relevant constants.

Eq. (3.2) is solved numerically using a fourth order Runge-Kutta method and H , ε1 are

obtained from the numerical solution of φ(N). After we solve the background, we solve Eq.

(3.6) numerically using a fourth order Runge-Kutta method. Using the numerical solutions

for hk and Eq. (1.21), we can numerically evaluate the power spectrum. Note that we are

working in units of MPl = 1
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import numpy
import matplotlib.pyplot as plt

plt.rc(’text’, usetex=True)
plt.rc(’font’, family=’serif’)

tps_file = open(’power_spectrum_power_law.dat’,’w’)
phi_file = open(’phi_vs_N_power_law.dat’,’w’)
h_file = open(’H_vs_N_power_law.dat’,’w’)
eps_file = open(’eps1_vs_N_power_law.dat’,’w’)

q = 51.
V0 = (204./100.)*1e-08
t0 = (q*(3.*q -1.)/V0)**(1./2)

phi0 = 1.
dphi0 = (2.*q)**(1./2)/t0

Ni = 0.
Nf = 70.

kp = 5.*1e-02
beta = -((2.*q -1.)/(q -1.))
eps1a = ((beta +2.)/(beta +1.))

V = lambda phi : V0*numpy.exp(-(2./q)**(1./2)*(phi -phi0))
dV=lambda phi :-(2./q)**(1./2)*V0*numpy.exp(-(2./q)**(1./2)*(phi -phi0))

H0 = ((1./3)*(dphi0**2/2. +V(phi0)))**(1./2.)
Dphi0 = dphi0/H0

def DDphi(N, phi0, Dphi0):
return -(3 -Dphi0**2/2.)*Dphi0 -(dV(phi0)/(2*V(phi0)))*(6 -Dphi0**2)

def rk4_step(N, phi0, Dphi0, step):
F1 = Dphi0
f1 = DDphi(N, phi0, Dphi0)
F2 = Dphi0 +f1*step/2.
f2 = DDphi(N +step/2., phi0 +F1*step/2., Dphi0 +f1*step/2.)
F3 = Dphi0 +f2*step/2.
f3 = DDphi(N +step/2., phi0 +F2*step/2., Dphi0 +f2*step/2.)
F4 = Dphi0 +f3*step
f4 = DDphi(N +step, phi0 +F3*step, Dphi0 +f3*step)

return [(f1 +2*f2 +2*f3 +f4)*step/6.,
(F1 +2*F2 +2*F3 +F4)*step/6.] # [Dphi, phi] update
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npts = 100000
step = (Nf-Ni)/(npts)

phi_ = phi0
Dphi_ = Dphi0

phi_array = numpy.array([phi_])
Dphi_array = numpy.array([Dphi_])
N_array = numpy.array([Ni])

phi_theory = lambda N : (2./q)**(1./2)*N + phi0

N = Ni
phi_file.write(str(N)+"\t"+str(phi_)+"\t"
+str(Dphi_)+"\t"+str(phi_theory(N))+"\n")
while N < Nf:

array = rk4_step(N, phi_, Dphi_, step)
phi_ = phi_ + array[1]
Dphi_ = Dphi_ + array[0]
phi_array = numpy.append(phi_array,phi_)
Dphi_array = numpy.append(Dphi_array,Dphi_)
N += step
N_array = numpy.append(N_array,N)
phi_file.write(str(N)+"\t"+str(phi_)+"\t"
+str(Dphi_)+"\t"+str(phi_theory(N))+"\n")

phi_file.close()

phi = lambda N : phi_array[int((N-Ni)/step)]
Dphi = lambda N : Dphi_array[int((N-Ni)/step)]

plt.cla()
plt.hold(True)
plt.xlim([Ni,Nf])
plt.xlabel(r’e-fold ${\rm N}$’)
plt.ylabel(r’$\phi({\rm N})$’)
plt.title(r’$\phi({\rm N})$ as a function of e-fold ${\rm N}$’)
numerical, = plt.plot(N_array, phi_array,
’--’, label = ’numerical results’)
theory, = plt.plot(N_array, [phi_theory(N) for N in N_array],
’-’, label = ’theory results’)

plt.legend([numerical, theory],
[’numerical results’, ’theoretical results’])
plt.savefig(’phi_vs_N_power_law.png’)
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eps0 = (3./2)*((dphi0**2)/(dphi0**2/2. + V(phi0)))
eps = 1./q

H = lambda N : (V(phi(N))/(3 -Dphi(N)**2/2))**(1./2)
DH = lambda N : -(1./2)*H(N)*Dphi(N)**2

H_theory = lambda N : H0*numpy.exp(-N/q)

for N in N_array:
h_file.write(str(N)+"\t"+str(H(N)/H0)+"\t"+str(H_theory(N)/H0)+"\n")

plt.cla()
plt.hold(True)
plt.xlim([Ni,Nf])
plt.xlabel(r’e-fold ${\rm N}$’)
plt.ylabel(r’${\rm H}({\rm N})$’)
plt.title(r’${\rm H}({\rm N})$ as a function of e-fold ${\rm N}$’)
numerical, = plt.plot(N_array, numpy.asarray([H(i) for i in N_array],
dtype= numpy.float64)/H0, ’--’, label = ’numerical results’)
theory, = plt.plot(N_array, [H_theory(N)/H0 for N in N_array],
’-’, label = ’theory’)
plt.legend([numerical, theory],
[’numerical results’, ’theoretical results’])
plt.savefig(’H_vs_N_power_law.png’)

ai = 1e-05

eps1 = lambda N : Dphi_array[int((N-Ni)/step)]**2/2.
eps1_theory = eps0

for N in N_array:
eps_file.write(str(N)+"\t"+str(eps1(N))+"\t"+str(eps1_theory)+"\n")

plt.cla()
plt.xlim([Ni,Nf])
plt.xlabel(r’e-fold ${\rm N}$’)
plt.ylabel(r’$\epsilon_1({\rm N})$’)
plt.title(r’$\epsilon_1({\rm N})$ as a function of e-fold ${\rm N}$’)
numerical, = plt.plot(N_array,
[str(eps1(i)).strip(’[]’) for i in N_array],
’--’, label = ’numerical results’)
plt.axhline(y=eps0)
plt.legend([numerical], [’numerical results’])
plt.savefig(’eps1_vs_N_power_law.png’)

z = lambda N: ai*numpy.exp(N)*Dphi(N)
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A = lambda N : ai*numpy.exp(N)

def DDhk(k0, N, hk0, Dhk0):
return -((3. +(DH(N)/H(N)))*Dhk0 +((k0/(A(N)*H(N)))**2)*hk0)

def rk4_step(k0, N, hk0, Dhk0, step):
F1 = Dhk0
f1 = DDhk(k0, N, hk0, Dhk0)
F2 = Dhk0 +f1*step/2.
f2 = DDhk(k0, N +step/2., hk0 +F1*step/2., Dhk0 +f1*step/2.)
F3 = Dhk0 +f2*step/2.
f3 = DDhk(k0, N +step/2., hk0 +F2*step/2., Dhk0 +f2*step/2.)
F4 = Dhk0 +f3*step
f4 = DDhk(k0, N +step, hk0 +F3*step, Dhk0 +f3*step)

return numpy.array([(f1 +2*f2 +2*f3 +f4)*step/6.], dtype=complex),
numpy.array([(F1 +2*F2 +2*F3 +F4)*step/6.], dtype=complex)
# [Dhk, hk] update

k_list = numpy.array([10**((-12 + i)/2.) for i in range(13)])
Nics_array = []
Nshs_array = []

for k in k_list:
Nics_temp = numpy.asarray([k - 1e+02*A(N)*H(N) for N in N_array])
Nshss_temp = numpy.asarray([k - 1e-05*A(N)*H(N) for N in N_array])
nics_test = numpy.where(Nics_temp > 0)
nshss_test = numpy.where(Nshss_temp > 0)
Nics_array.append(Ni + nics_test[0][-1]*step)
Nshs_array.append(Ni + nshss_test[0][-1]*step)

Nics_arr = numpy.asarray(Nics_array)
Nshs_arr = numpy.asarray(Nshs_array)

k_min = 1e-6
k_max = 10**(1./2)

k_vs_hk = numpy.zeros(1,dtype=complex)

i = 0
k0 = k_min

while k0 < k_max:
print ’k0 = ’, k0

Nics = Nics_arr[i]
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Nshss = Nshs_arr[i]

hk0 = numpy.zeros(1,dtype=complex)
hk0.real = (((2.*k0)**(1./2))*A(Nics))**(-1.)

Dhk0 = numpy.zeros(1,dtype=complex)
Dhk0.real = -(1/A(Nics))*((2*k0)**(-1./2))
Dhk0.imag = -((k0/2)**(1./2))/(A(Nics)*A(Nics)*H(Nics))

N = Nics
while N < Nshss:

array = rk4_step(k0, N, hk0, Dhk0, step)
hk0 = hk0 + array[1]
Dhk0 = Dhk0 + array[0]
N += step

k_vs_hk = numpy.append(k_vs_hk, hk0)
print ’\n’

temp = 2*(k0)**3/(2*numpy.pi**2)*(numpy.absolute(hk0))**2
tps_file.write(str(k0)+"\t"+str(temp).strip(’[]’)+"\n")
k0 = 10**(1./2)*k0
i += 1

k_list = numpy.array([10**((-12 + i)/2.) for i in range(13)])
TPS = [2*(k_list[i])**3/(2*numpy.pi**2)*
(numpy.absolute(k_vs_hk[i+1]))**2 for i in range(len(k_list))]
print k_list, TPS

tps_file.close()

plt.cla()
plt.xlabel(r’$k$’)
plt.ylabel(r’${\mathcal{P}}_{\rm T}(k)$’)
plt.title(r’${\mathcal{P}}_{\rm T}(k)$ as a function of $k$’)
numerics, = plt.loglog(k_list, TPS)
plt.legend([numerics],[’numerical results’])
plt.savefig(’power_spectrum_power_law.png’)
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