$$T = \frac{1}{1+F\sin^2(\delta/2)}$$ $$ F = \frac{4R}{(1-R)^2}$$ $$\delta = \frac{2\pi}{\lambda}2nl\cos\theta$$ is the phase difference between successive transmitted pair
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from ipywidgets import StaticInteract, RangeWidget
x = np.linspace(-4*np.pi,4*np.pi,501)
def plot(r):
fig, ax = plt.subplots(figsize=(5, 5),
subplot_kw={'axisbg':'#EEEEEE',
'axisbelow':True})
ax.grid(color='w', linewidth=2, linestyle='solid')
F = 4*r/(1-r)**2
ax.plot(x,1/(1+F*np.sin(x/2)**2), lw=5, alpha=0.4)
#ax.set_xlim(-50, 50)
ax.set_title('plot of transmittance vs phase and reflectance')
ax.set_xlabel('delta')
ax.set_ylabel('transmittance')
ax.set_ylim(0, 1)
return fig
StaticInteract(plot,r=RangeWidget(0.0, 1.0, 0.1))